This guide will look at the installation of Mambaforge or Anaconda on Windows.
For Linux/Mac see:
Table of contents
- System Requirements
- Uninstalling and Purging Old Python Installations
- Mambaforge vs Anaconda
- Installation
- Launching the Mambaforge or Anaconda Powershell Prompt
- Exploring the Python base Environment
- Anaconda Navigator
- Updating the base Python Environment
- Package Manager
- list
- search
- create
- activate
- install
- Exploring the spyder Python Environment
- update
- clean
- revision
- remove
- env
- Python Environments for IDEs
- Exporting an Environment to a yml file
- Creating an Environment from a yml file
System Requirements
The PC should match or exceed the following system requirements:
- Modern Windows Version e.g. Windows 11 22H2 or Windows 10 22H2
- 6th Generation Intel i5 Processor or Later
- 8 GB RAM or Superior
- 250 GB SSD or Superior
- Chromium or Google Chrome Browser
The performance for Python will be poor if these system requirements are not satisfied.
Uninstalling and Purging Old Python Installations
Previous versions of Python Distributions should be uninstalled. For more details see:
Skip uninstallation if already on a clean install of Windows.
Mambaforge vs Anaconda
For development it is better to install a Python Distribution. There are two choices:
- Mambaforge
- Anaconda
Mambaforge has a basic base Python environment, installs packages using the community channel conda-forge by default and uses the mamba package manager which is an improved version of the conda package manager.
Anaconda has a busy base Python environment with a multitude of packages preinstalled such as numpy, pandas, matplotlib, seaborn, spyder and jupyterlab. The packages are from the Anaconda Inc channel conda and uses the conda package manager by default. The packages in the conda channel are not as up to date as those in the conda-forge channel as Anaconda Inc take additional time to test packages with their busy Python base environment. Moreover the number of packages in the conda channel are a subset of those in the conda-forge channel as Anaconda Inc only preinstall the most commonly used packages. Becausethere are so many packages in the base environment, there are often installation conflicts when attempting to install new packages. It is not recommended to update the Anaconda base environment until a standalone installer is released by Anaconda. To install new packages, a Python environment needs to be created.
Installation
The Installers are available from their perspective websites:
Both installers are similar. Double click to launch the installer:

Select Next:

Select Next:

Select Just Me (recommended):

In the next screen you will be asked where you want to install Mambaforge or Anaconda. It is recommended to install the programs in their default directory.
For Mambaforge:
%USERPROFILE%\mambaforge
For Anaconda:
%USERPROFILE%\anaconda3

Mambaforge in my case maps to
C:\Users\Philip\mambaforge
Anaconda would be installed in:
C:\Users\Philip\anaconda3
In the next screen, select the default options to register Mambaforge or Anaconda as my default Python and create start menu shortcuts.

Mambaforge can optionally be added to the Windows Environment Variable Path. This makes the base Python environment accessible via the Windows Terminal which allows third party applications to accessing Python from the Windows Terminal. This is not recommended by default. Such a use case is normally more advanced, for example a C++ IDE that is configured by default to access the Windows Terminal will also be able to invoke a Python Script if Mambaforge is added to the Windows Environmental Variables Path. For more details see:
Note that in most regular use scenarios the Mambaforge Prompt or Anaconda Powershell Prompt should be preferentially used to interact with Python instead of the Windows Terminal. These are similar to the Windows Terminal but are optimised to work with multiple Python environments and not hard coded to the single base environment provided in the Windows Environmental Variables Path as in the case of the Windows Terminal.

Once the decision to add Mambaforge to the Windows Environmental Path or not is configured. Select Install:

Select Next and Finish:


Launching the Mambaforge or Anaconda Powershell Prompt
Launch the Mambaforge Prompt or Anaconda Powershell Prompt from the Start Menu:

Unfortunately when initially installed, the Mambaforge Prompt may display as Miniforge Prompt which is a bug which will be addressed when the installation is updated.
The Prompt looks like the following.
(base) %USERPROFILE%>
The prompt is prefixed by (base) indicating that the base Python environment is selected.
The file path is shown which defaults to the User Profile which can be accessed in Windows Explorer by inputting:
%USERPROFILE%
into the address bar and in my case is C:\Users\Philip
A command can be input after the prompt >
When copying any line of code from this guide into your Mambaforge Prompt or Anaconda Powershell prompt do not include the prompt. i.e. copy to the right hand side of the > sign.
The Python in the base environment can be accessed from the Linux Terminal using:
(base) %USERPROFILE%> python
Details about the Python version will be shown:
(base) %USERPROFILE%> python
Python 3.10.10 | packaged by conda-forge | (main, Mar 24 2023, 20:00:38) [MSC v.1934 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
The Python Prompt will display and looks like the following.
>>>
For clarity, the syntax highlighting scheme in this guide will use dark for Powershell and light for Python making the changes more obvious. Python code can be input:
>>> var = 'Hello World!'
>>> print(var)
Hello World!
>>>
To exit, the Python prompt, the Python exit function can be used:
>>> exit()
This will return to the Powershell Prompt:
(base) %USERPROFILE%>
To exit powershell, the exit command can be used:
(base) %USERPROFILE%> exit
Notice the slight difference in syntax between the exit command (Powershell) and exit function (Python) because two different programming languages are used.
Exploring the Python base Environment
Navigate to:
%USERPROFILE%/mambaforge
%USERPROFILE%/anaconda3
Notice that this folder contains a python.exe which was ran earlier.

The Lib folder contains a large number of Python modules, script files ending in .py.

%USERPROFILE%/mambaforge/Lib
%USERPROFILE%/anaconda3/Lib
If Python is launched:
(base) %USERPROFILE%> python
Details about the Python distribution will be displayed:
(base) %USERPROFILE%> python
Python 3.10.10 | packaged by conda-forge | (main, Mar 24 2023, 20:00:38) [MSC v.1934 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
And a Python Prompt will display:
>>>
There is a datetime.py and this is imported in Python with the following:
>>> import datetime

There are also some subfolders such as collections. In the subfolders are a number of Python modules. The Python script file called __init__.py and this is the file imported in Python using the name of the folder:
>>> import collections


The modules in this folder or in the subfolders are known as Python standard libraries and are included with Python 3.10 which is preinstalled by Mambaforge and Anaconda.
There is also the site-packages subfolder which is where the third-party Python packages are installed which includes the popular data science libraries:
%USERPROFILE%\mambaforge\Lib\site-packages
%USERPROFILE%\anaconda3\Lib\site-packages

In both cases there is a conda folder which contains the conda package manager and another folder which contains its version.
Mambaforge will also contain a mamba folder and has 70 items as shown.

The Anaconda distribution will contain a very large number of folders. The most commonly used are numpy, pandas, matplotlib and seaborn and these folders will be listed alongside their versions.
The numpy folder has a __init__.py file and this file is imported when the following is input:
>>> import numpy as np
The matplotlib folder has a __init__.py file and pyplot.py file. This pyplot module of this library is imported when the following is input:
>>> import matplotlib.pyplot as plt
If these two commands are attempted in Mambaforge because these libraries aren't found in the Python (base) environment the following will display:
>>> import numpy as np
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'numpy'
Anaconda Navigator
Mambaforge does not have the Anaconda Navigator. The (base) Mambaforge environment is minimal and does not include the Spyder or JupyterLab IDEs.
The Anaconda Navigator can be launched using:
(base) %USERPROFILE%> anaconda-navigator

This gives a user interface for launching IDEs such as Spyder and JupyterLab.
The Spyder IDE can be launched from its Start Menu Shortcut or from the tile in the Anaconda navigator. It can be launched from the Anaconda Powershell Prompt directly using:
(base) %USERPROFILE%> spyder

Ignore prompts to update Spyder as a dependency for the latest version of Spyder is not yet satisfied in the conda channel.
In general, it is not recommended to change anything in the Anaconda base Python environment and instead wait until Anaconda release an updated installer. The Python environment is very busy and attempting to install or update a package results in other packages being removed due to their dependencies not being satisfied, this usually results in an unstable base Python environment.
The Anaconda Navigator supports a limited number of package upgrades for example the upgrade from Spyder 5.4.1 to 5.4.3:

Although it reports a successful install:

Spyder launches with a dependency error:

To the left, environments can be selected and the base Python environment can be selected:

Installing this package modifies 25 packages and removes 175 packages, reducing the functionality of the base Python environment:

The JupyterLab IDE can be launched from its tile or directly using:
(base) %USERPROFILE%> jupyter lab
Note the space between jupyter and lab, this is the only time a space is used for jupyterlab.
If ran from the Anaconda Powershell Prompt, the following will be displayed. Essentially the Anaconda Powershell Prompt runs a JupyterLab server which displays in the browser.
[I 2023-05-06 11:05:15.119 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 2023-05-06 11:05:15.172 ServerApp]
To access the server, open this file in a browser:
file:///C:/Users/Phili/AppData/Roaming/jupyter/runtime/jpserver-22284-open.html
Or copy and paste one of these URLs:
http://localhost:8888/lab?token=721fb2f4f374f47c2b4e4f4381150f88850bb1a95c81d241
or http://127.0.0.1:8888/lab?token=721fb2f4f374f47c2b4e4f4381150f88850bb1a95c81d241
[W 2023-05-06 11:05:19.162 LabApp] Could not determine jupyterlab build status without nodejs

The server is instructed to run using an infinite loop. After JupyterLab is closed in the browser, the infinite loop can be exited by pressing Ctrl + c and the Anaconda Powershell Prompt will display Interrupted alongside a new Prompt:
[I 2023-05-06 11:09:35.173 ServerApp] Interrupted...
(base) PS %USERPROFILE%>
Updating the base Python Environment
To update the (base) Python environment in Mambaforge use:
(base) %USERPROFILE%> mamba update -all
The terminal will display:
Looking for: ['brotlipy', 'bzip2', 'ca-certificates', 'certifi', 'cffi', 'charset-normalizer', 'colorama', 'conda', 'conda-package-handling', 'conda-package-streaming', 'cryptography', 'fmt', 'idna', 'krb5', 'libarchive', 'libcurl', 'libffi', 'libiconv', 'libmamba', 'libmambapy', 'libsolv', 'libsqlite', 'libssh2', 'libxml2', 'libzlib', 'lz4-c', 'lzo', 'mamba', 'menuinst', 'miniforge_console_shortcut', 'openssl', 'pip', 'pluggy', 'pybind11-abi', 'pycosat', 'pycparser', 'pyopenssl', 'pysocks', 'python', 'python_abi', 'reproc', 'reproc-cpp', 'requests', 'ruamel.yaml', 'ruamel.yaml.clib', 'setuptools', 'tk', 'toolz', 'tqdm', 'tzdata', 'ucrt', 'urllib3', 'vc', 'vs2015_runtime', 'wheel', 'win_inet_pton', 'xz', 'yaml-cpp', 'zstandard', 'zstd']
conda-forge/win-64 20.2MB @ 3.8MB/s 7.3s
conda-forge/noarch 12.2MB @ 1.6MB/s 8.6s
Pinned packages:
- python 3.10.*
Transaction
Prefix: %USERPROFILE%\mambaforge
The transaction gives the location of the Mambaforge environment. You can open this location in file explorer and view the changes:
%USERPROFILE%\mambaforge\Lib\site-packages
%USERPROFILE%\anaconda3\Lib\site-packages
Then details about each package being Installed, Changed and Upgraded will be listed. Input y and then press ↵
Package Version Build Channel Size
--------------------------------------------------------------------------------------------
Install:
--------------------------------------------------------------------------------------------
+ boltons 23.0.0 pyhd8ed1ab_0 conda-forge/noarch 303kB
+ jsonpatch 1.32 pyhd8ed1ab_0 conda-forge/noarch 15kB
+ jsonpointer 2.0 py_0 conda-forge/noarch 9kB
+ packaging 23.1 pyhd8ed1ab_0 conda-forge/noarch 46kB
+ vc14_runtime 14.34.31931 h5081d32_16 conda-forge/win-64 726kB
Change:
--------------------------------------------------------------------------------------------
- libsqlite 3.40.0 hcfcfb64_0 conda-forge
+ libsqlite 3.40.0 hcfcfb64_1 conda-forge/win-64 825kB
- openssl 3.1.0 hcfcfb64_0 conda-forge
+ openssl 3.1.0 hcfcfb64_3 conda-forge/win-64 7MB
- vs2015_runtime 14.34.31931 h4c5c07a_10 conda-forge
+ vs2015_runtime 14.34.31931 hed1258a_16 conda-forge/win-64 17kB
Upgrade:
--------------------------------------------------------------------------------------------
- conda 23.1.0 py310h5588dad_0 conda-forge
+ conda 23.3.1 py310h5588dad_0 conda-forge/win-64 970kB
- cryptography 40.0.1 py310h6e82f81_0 conda-forge
+ cryptography 40.0.2 py310h6e82f81_0 conda-forge/win-64 1MB
- libcurl 7.88.1 h68f0423_1 conda-forge
+ libcurl 8.0.1 h68f0423_0 conda-forge/win-64 312kB
- libmamba 1.4.1 h8a7d157_0 conda-forge
+ libmamba 1.4.2 h8a7d157_0 conda-forge/win-64 3MB
- libmambapy 1.4.1 py310h3fe4c2e_0 conda-forge
+ libmambapy 1.4.2 py310h3fe4c2e_0 conda-forge/win-64 497kB
- libxml2 2.10.3 hc3477c8_6 conda-forge
+ libxml2 2.10.4 hc3477c8_0 conda-forge/win-64 2MB
- mamba 1.4.1 py310hd9d798f_0 conda-forge
+ mamba 1.4.2 py310hd9d798f_0 conda-forge/win-64 67kB
- miniforge_console_shortcut 1.0 h57928b3_0 conda-forge
+ miniforge_console_shortcut 2.0 h57928b3_1 conda-forge/win-64 16kB
- pip 23.0.1 pyhd8ed1ab_0 conda-forge
+ pip 23.1.2 pyhd8ed1ab_0 conda-forge/noarch 1MB
- requests 2.28.2 pyhd8ed1ab_1 conda-forge
+ requests 2.29.0 pyhd8ed1ab_0 conda-forge/noarch 57kB
- ruamel.yaml 0.17.21 py310h8d17308_3 conda-forge
+ ruamel.yaml 0.17.22 py310h8d17308_0 conda-forge/win-64 193kB
- setuptools 65.6.3 pyhd8ed1ab_0 conda-forge
+ setuptools 67.7.2 pyhd8ed1ab_0 conda-forge/noarch 583kB
Summary:
Install: 5 packages
Change: 3 packages
Upgrade: 12 packages
Total download: 20MB
--------------------------------------------------------------------------------------------
Confirm changes: [Y/n] y
The packages will then download and install, when finished a new prompt will display:
Downloading and Extracting Packages
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(base) %USERPROFILE%>
The changes will also be reflected in file explorer.
Do not update the base environment in Anaconda as it will likely result in an instability, notice that an attempted update removes most of the installed packages in the base environment. Instead wait for the next updated standalone installer.
(base) PS C:\Users\Phili> conda update --all -c conda
Collecting package metadata (current_repodata.json): done
Solving environment: done
## Package Plan ##
environment location: C:\Users\Phili\anaconda3
The following packages will be downloaded:
package | build
---------------------------|-----------------
beautifulsoup4-4.12.2 | py310haa95532_0 212 KB
conda-package-handling-2.0.2| py_0 246 KB conda
conda-package-streaming-0.7.0| py_0 17 KB conda
jupyter_core-5.3.0 | py310haa95532_0 108 KB
krb5-1.19.4 | h5b6d351_0 786 KB
libarchive-3.6.2 | h2033e3e_1 1.8 MB
libclang-14.0.6 |default_hb5a9fac_1 154 KB
libclang13-14.0.6 |default_h8e68704_1 22.5 MB
libxml2-2.10.3 | h0ad7f3c_0 2.9 MB
libxslt-1.1.37 | h2bbff1b_0 448 KB
packaging-23.0 | py310haa95532_0 70 KB
pip-23.0.1 | py310haa95532_0 2.8 MB
python-3.10.11 | h966fe2a_2 15.8 MB
qt-main-5.15.2 | he8e5bd7_8 59.4 MB
qtwebkit-5.212 | h2bbfb41_5 11.6 MB
requests-2.29.0 | py310haa95532_0 98 KB
setuptools-66.0.0 | py310haa95532_0 1.2 MB
soupsieve-2.4 | py310haa95532_0 70 KB
sqlite-3.41.2 | h2bbff1b_0 894 KB
tornado-6.2 | py310h2bbff1b_0 619 KB
tqdm-4.65.0 | py310h9909e9c_0 149 KB
tzdata-2023c | h04d1e81_0 116 KB
urllib3-1.26.15 | py310haa95532_0 195 KB
xz-5.4.2 | h8cc25b3_0 592 KB
zstd-1.5.5 | hd43e919_0 682 KB
------------------------------------------------------------
Total: 123.2 MB
The following NEW packages will be INSTALLED:
krb5 pkgs/main/win-64::krb5-1.19.4-h5b6d351_0
libclang13 pkgs/main/win-64::libclang13-14.0.6-default_h8e68704_1
The following packages will be REMOVED:
alabaster-0.7.12-pyhd3eb1b0_0
anyio-3.5.0-py310haa95532_0
appdirs-1.4.4-pyhd3eb1b0_0
argon2-cffi-21.3.0-pyhd3eb1b0_0
argon2-cffi-bindings-21.2.0-py310h2bbff1b_0
arrow-1.2.3-py310haa95532_1
astroid-2.14.2-py310haa95532_0
astropy-5.1-py310h9128911_0
asttokens-2.0.5-pyhd3eb1b0_0
atomicwrites-1.4.0-py_0
automat-20.2.0-py_0
autopep8-1.6.0-pyhd3eb1b0_1
babel-2.11.0-py310haa95532_0
backcall-0.2.0-pyhd3eb1b0_0
bcrypt-3.2.0-py310h2bbff1b_1
binaryornot-0.4.4-pyhd3eb1b0_1
black-22.6.0-py310haa95532_0
blas-1.0-mkl
bleach-4.1.0-pyhd3eb1b0_0
blosc-1.21.3-h6c2663c_0
bokeh-2.4.3-py310haa95532_0
bottleneck-1.3.5-py310h9128911_0
brotli-1.0.9-h2bbff1b_7
brotli-bin-1.0.9-h2bbff1b_7
cfitsio-3.470-h2bbff1b_7
charls-2.2.0-h6c2663c_0
cloudpickle-2.0.0-pyhd3eb1b0_0
colorcet-3.0.1-py310haa95532_0
comm-0.1.2-py310haa95532_0
constantly-15.1.0-py310haa95532_0
contourpy-1.0.5-py310h59b6b97_0
cookiecutter-1.7.3-pyhd3eb1b0_0
cssselect-1.1.0-pyhd3eb1b0_0
curl-7.87.0-h2bbff1b_0
cycler-0.11.0-pyhd3eb1b0_0
cytoolz-0.12.0-py310h2bbff1b_0
daal4py-2023.0.2-py310hf497b98_0
dal-2023.0.1-h59b6b97_26646
dask-2022.7.0-py310haa95532_0
dask-core-2022.7.0-py310haa95532_0
datashader-0.14.4-py310haa95532_0
datashape-0.5.4-py310haa95532_1
debugpy-1.5.1-py310hd77b12b_0
decorator-5.1.1-pyhd3eb1b0_0
diff-match-patch-20200713-pyhd3eb1b0_0
dill-0.3.6-py310haa95532_0
distributed-2022.7.0-py310haa95532_0
docstring-to-markdown-0.11-py310haa95532_0
docutils-0.18.1-py310haa95532_3
entrypoints-0.4-py310haa95532_0
et_xmlfile-1.1.0-py310haa95532_0
executing-0.8.3-pyhd3eb1b0_0
flake8-6.0.0-py310haa95532_0
flask-2.2.2-py310haa95532_0
flit-core-3.6.0-pyhd3eb1b0_0
fonttools-4.25.0-pyhd3eb1b0_0
fsspec-2022.11.0-py310haa95532_0
gensim-4.3.0-py310h4ed8f06_0
greenlet-2.0.1-py310hd77b12b_0
h5py-3.7.0-py310hfc34f40_0
hdf5-1.10.6-h1756f20_1
heapdict-1.0.1-pyhd3eb1b0_0
holoviews-1.15.4-py310haa95532_0
huggingface_hub-0.10.1-py310haa95532_0
hvplot-0.8.2-py310haa95532_0
hyperlink-21.0.0-pyhd3eb1b0_0
icc_rt-2022.1.0-h6049295_2
imagecodecs-2021.8.26-py310h4c966c4_2
imageio-2.26.0-py310haa95532_0
imagesize-1.4.1-py310haa95532_0
imbalanced-learn-0.10.1-py310haa95532_0
importlib-metadata-4.11.3-py310haa95532_0
importlib_metadata-4.11.3-hd3eb1b0_0
incremental-21.3.0-pyhd3eb1b0_0
inflection-0.5.1-py310haa95532_0
iniconfig-1.1.1-pyhd3eb1b0_0
intake-0.6.7-py310haa95532_0
intel-openmp-2021.4.0-haa95532_3556
intervaltree-3.1.0-pyhd3eb1b0_0
ipykernel-6.19.2-py310h9909e9c_0
ipython-8.10.0-py310haa95532_0
ipython_genutils-0.2.0-pyhd3eb1b0_1
ipywidgets-7.6.5-pyhd3eb1b0_1
isort-5.9.3-pyhd3eb1b0_0
itemadapter-0.3.0-pyhd3eb1b0_0
itemloaders-1.0.4-pyhd3eb1b0_1
itsdangerous-2.0.1-pyhd3eb1b0_0
jedi-0.18.1-py310haa95532_1
jellyfish-0.9.0-py310h2bbff1b_0
jinja2-time-0.2.0-pyhd3eb1b0_3
jmespath-0.10.0-pyhd3eb1b0_0
joblib-1.1.1-py310haa95532_0
jq-1.6-haa95532_1
json5-0.9.6-pyhd3eb1b0_0
jupyter-1.0.0-py310haa95532_8
jupyter_client-7.3.4-py310haa95532_0
jupyter_console-6.6.2-py310haa95532_0
jupyter_server-1.23.4-py310haa95532_0
jupyterlab-3.5.3-py310haa95532_0
jupyterlab_pygments-0.1.2-py_0
jupyterlab_server-2.19.0-py310haa95532_0
jupyterlab_widgets-1.0.0-pyhd3eb1b0_1
jxrlib-1.1-he774522_2
keyring-23.4.0-py310haa95532_0
kiwisolver-1.4.4-py310hd77b12b_0
lazy-object-proxy-1.6.0-py310h2bbff1b_0
lcms2-2.12-h83e58a3_0
libaec-1.0.4-h33f27b4_1
libbrotlicommon-1.0.9-h2bbff1b_7
libbrotlidec-1.0.9-h2bbff1b_7
libbrotlienc-1.0.9-h2bbff1b_7
libcurl-7.87.0-h86230a5_0
libsodium-1.0.18-h62dcd97_0
libspatialindex-1.9.3-h6c2663c_0
libssh2-1.10.0-hcd4344a_0
libuv-1.44.2-h2bbff1b_0
libzopfli-1.0.3-ha925a31_0
llvmlite-0.39.1-py310h23ce68f_0
locket-1.0.0-py310haa95532_0
lxml-4.9.1-py310h1985fb9_0
lz4-3.1.3-py310h2bbff1b_0
lzo-2.10-he774522_2
m2w64-libwinpthread-git-5.0.0.4634.697f757-2
markdown-3.4.1-py310haa95532_0
matplotlib-3.7.0-py310haa95532_0
matplotlib-base-3.7.0-py310h4ed8f06_0
matplotlib-inline-0.1.6-py310haa95532_0
mccabe-0.7.0-pyhd3eb1b0_0
mistune-0.8.4-py310h2bbff1b_1000
mkl-2021.4.0-haa95532_640
mkl-service-2.4.0-py310h2bbff1b_0
mkl_fft-1.3.1-py310ha0764ea_0
mkl_random-1.2.2-py310h4ed8f06_0
mock-4.0.3-pyhd3eb1b0_0
mpmath-1.2.1-py310haa95532_0
msgpack-python-1.0.3-py310h59b6b97_0
multipledispatch-0.6.0-py310haa95532_0
munkres-1.1.4-py_0
mypy_extensions-0.4.3-py310haa95532_1
nbclassic-0.5.2-py310haa95532_0
nbclient-0.5.13-py310haa95532_0
nbconvert-6.5.4-py310haa95532_0
nest-asyncio-1.5.6-py310haa95532_0
networkx-2.8.4-py310haa95532_0
ninja-1.10.2-haa95532_5
ninja-base-1.10.2-h6d14046_5
nltk-3.7-pyhd3eb1b0_0
notebook-6.5.2-py310haa95532_0
notebook-shim-0.2.2-py310haa95532_0
numba-0.56.4-py310h4ed8f06_0
numexpr-2.8.4-py310hd213c9f_0
numpy-1.23.5-py310h60c9a35_0
numpy-base-1.23.5-py310h04254f7_0
numpydoc-1.5.0-py310haa95532_0
openjpeg-2.4.0-h4fc8c34_0
openpyxl-3.0.10-py310h2bbff1b_0
pandas-1.5.3-py310h4ed8f06_0
pandocfilters-1.5.0-pyhd3eb1b0_0
panel-0.14.3-py310haa95532_0
param-1.12.3-py310haa95532_0
paramiko-2.8.1-pyhd3eb1b0_0
parsel-1.6.0-py310haa95532_0
parso-0.8.3-pyhd3eb1b0_0
partd-1.2.0-pyhd3eb1b0_1
pathspec-0.10.3-py310haa95532_0
patsy-0.5.3-py310haa95532_0
pep8-1.7.1-py310haa95532_1
pexpect-4.8.0-pyhd3eb1b0_3
pickleshare-0.7.5-pyhd3eb1b0_1003
plotly-5.9.0-py310haa95532_0
pooch-1.4.0-pyhd3eb1b0_0
poyo-0.5.0-pyhd3eb1b0_0
prometheus_client-0.14.1-py310haa95532_0
prompt-toolkit-3.0.36-py310haa95532_0
prompt_toolkit-3.0.36-hd3eb1b0_0
protego-0.1.16-py_0
ptyprocess-0.7.0-pyhd3eb1b0_2
pure_eval-0.2.2-pyhd3eb1b0_0
py-1.11.0-pyhd3eb1b0_0
pyasn1-0.4.8-pyhd3eb1b0_0
pyasn1-modules-0.2.8-py_0
pycodestyle-2.10.0-py310haa95532_0
pyct-0.5.0-py310haa95532_0
pycurl-7.45.1-py310hcd4344a_0
pydispatcher-2.0.5-py310haa95532_2
pydocstyle-6.3.0-py310haa95532_0
pyerfa-2.0.0-py310h2bbff1b_0
pyflakes-3.0.1-py310haa95532_0
pygments-2.11.2-pyhd3eb1b0_0
pyhamcrest-2.0.2-pyhd3eb1b0_2
pylint-2.16.2-py310haa95532_0
pylint-venv-2.3.0-py310haa95532_0
pyls-spyder-0.4.0-pyhd3eb1b0_0
pynacl-1.5.0-py310h8cc25b3_0
pyodbc-4.0.34-py310hd77b12b_0
pyparsing-3.0.9-py310haa95532_0
pyqtwebengine-5.15.7-py310hd77b12b_0
pytables-3.7.0-py310h388bc9b_1
pytest-7.1.2-py310haa95532_0
python-lsp-black-1.2.1-py310haa95532_0
python-lsp-jsonrpc-1.0.0-pyhd3eb1b0_0
python-lsp-server-1.7.1-py310haa95532_0
python-slugify-5.0.2-pyhd3eb1b0_0
python-snappy-0.6.1-py310hd77b12b_0
pytoolconfig-1.2.5-py310haa95532_1
pytorch-1.12.1-cpu_py310h5e1f01c_1
pyviz_comms-2.0.2-pyhd3eb1b0_0
pywavelets-1.4.1-py310h2bbff1b_0
pywin32-ctypes-0.2.0-py310haa95532_1000
pywinpty-2.0.10-py310h5da7b33_0
pyzmq-23.2.0-py310hd77b12b_0
qdarkstyle-3.0.2-pyhd3eb1b0_0
qstylizer-0.2.2-py310haa95532_0
qtawesome-1.2.2-py310haa95532_0
qtconsole-5.4.0-py310haa95532_0
queuelib-1.5.0-py310haa95532_0
regex-2022.7.9-py310h2bbff1b_0
requests-file-1.5.1-pyhd3eb1b0_0
rope-1.7.0-py310haa95532_0
rtree-1.0.1-py310h2eaa2aa_0
scikit-image-0.19.3-py310hd77b12b_1
scikit-learn-1.2.1-py310hd77b12b_0
scikit-learn-intelex-2023.0.2-py310haa95532_0
scipy-1.10.0-py310hb9afe5d_1
scrapy-2.8.0-py310haa95532_0
seaborn-0.12.2-py310haa95532_0
send2trash-1.8.0-pyhd3eb1b0_1
service_identity-18.1.0-pyhd3eb1b0_1
smart_open-5.2.1-py310haa95532_0
snappy-1.1.9-h6c2663c_0
sniffio-1.2.0-py310haa95532_1
snowballstemmer-2.2.0-pyhd3eb1b0_0
sortedcontainers-2.4.0-pyhd3eb1b0_0
sphinx-5.0.2-py310haa95532_0
sphinxcontrib-applehelp-1.0.2-pyhd3eb1b0_0
sphinxcontrib-devhelp-1.0.2-pyhd3eb1b0_0
sphinxcontrib-htmlhelp-2.0.0-pyhd3eb1b0_0
sphinxcontrib-jsmath-1.0.1-pyhd3eb1b0_0
sphinxcontrib-qthelp-1.0.3-pyhd3eb1b0_0
sphinxcontrib-serializinghtml-1.1.5-pyhd3eb1b0_0
spyder-5.4.1-py310haa95532_0
spyder-kernels-2.4.1-py310haa95532_0
sqlalchemy-1.4.39-py310h2bbff1b_0
stack_data-0.2.0-pyhd3eb1b0_0
statsmodels-0.13.5-py310h9128911_1
sympy-1.11.1-py310haa95532_0
tabulate-0.8.10-py310haa95532_0
tbb-2021.7.0-h59b6b97_0
tbb4py-2021.7.0-py310h59b6b97_0
tblib-1.7.0-pyhd3eb1b0_0
tenacity-8.0.1-py310haa95532_1
terminado-0.17.1-py310haa95532_0
text-unidecode-1.3-pyhd3eb1b0_0
textdistance-4.2.1-pyhd3eb1b0_0
threadpoolctl-2.2.0-pyh0d69192_0
three-merge-0.1.1-pyhd3eb1b0_0
tifffile-2021.7.2-pyhd3eb1b0_2
tinycss2-1.2.1-py310haa95532_0
tldextract-3.2.0-pyhd3eb1b0_0
tokenizers-0.11.4-py310he5181cf_1
tomlkit-0.11.1-py310haa95532_0
transformers-4.24.0-py310haa95532_0
twisted-22.2.0-py310h2bbff1b_1
twisted-iocpsupport-1.0.2-py310h2bbff1b_0
typing-extensions-4.4.0-py310haa95532_0
typing_extensions-4.4.0-py310haa95532_0
unidecode-1.2.0-pyhd3eb1b0_0
w3lib-1.21.0-pyhd3eb1b0_0
watchdog-2.1.6-py310haa95532_0
wcwidth-0.2.5-pyhd3eb1b0_0
webencodings-0.5.1-py310haa95532_1
websocket-client-0.58.0-py310haa95532_4
werkzeug-2.2.2-py310haa95532_0
whatthepatch-1.0.2-py310haa95532_0
widgetsnbextension-3.5.2-py310haa95532_0
wincertstore-0.2-py310haa95532_2
winpty-0.4.3-4
wrapt-1.14.1-py310h2bbff1b_0
xarray-2022.11.0-py310haa95532_0
xlwings-0.29.1-py310haa95532_0
yapf-0.31.0-pyhd3eb1b0_0
zeromq-4.3.4-hd77b12b_0
zfp-0.5.5-hd77b12b_6
zict-2.1.0-py310haa95532_0
zipp-3.11.0-py310haa95532_0
zope-1.0-py310haa95532_1
zope.interface-5.4.0-py310h2bbff1b_0
The following packages will be UPDATED:
beautifulsoup4 4.11.1-py310haa95532_0 --> 4.12.2-py310haa95532_0
jupyter_core 5.2.0-py310haa95532_0 --> 5.3.0-py310haa95532_0
libarchive 3.6.2-hebabd0d_0 --> 3.6.2-h2033e3e_1
libclang 12.0.0-default_h627e005_2 --> 14.0.6-default_hb5a9fac_1
libxml2 2.9.14-h0ad7f3c_0 --> 2.10.3-h0ad7f3c_0
libxslt 1.1.35-h2bbff1b_0 --> 1.1.37-h2bbff1b_0
packaging 22.0-py310haa95532_0 --> 23.0-py310haa95532_0
pip 22.3.1-py310haa95532_0 --> 23.0.1-py310haa95532_0
python 3.10.9-h966fe2a_1 --> 3.10.11-h966fe2a_2
qt-main 5.15.2-he8e5bd7_7 --> 5.15.2-he8e5bd7_8
qtwebkit 5.212-h3ad3cdb_4 --> 5.212-h2bbfb41_5
requests 2.28.1-py310haa95532_0 --> 2.29.0-py310haa95532_0
setuptools 65.6.3-py310haa95532_0 --> 66.0.0-py310haa95532_0
soupsieve 2.3.2.post1-py310haa95532_0 --> 2.4-py310haa95532_0
sqlite 3.40.1-h2bbff1b_0 --> 3.41.2-h2bbff1b_0
tornado 6.1-py310h2bbff1b_0 --> 6.2-py310h2bbff1b_0
tqdm 4.64.1-py310haa95532_0 --> 4.65.0-py310h9909e9c_0
tzdata 2022g-h04d1e81_0 --> 2023c-h04d1e81_0
urllib3 1.26.14-py310haa95532_0 --> 1.26.15-py310haa95532_0
xz 5.2.10-h8cc25b3_1 --> 5.4.2-h8cc25b3_0
zstd 1.5.2-h19a0ad4_0 --> 1.5.5-hd43e919_0
The following packages will be SUPERSEDED by a higher-priority channel:
conda-package-han~ pkgs/main/win-64::conda-package-handl~ --> conda/noarch::conda-package-handling-2.0.2-py_0
conda-package-str~ pkgs/main/win-64::conda-package-strea~ --> conda/noarch::conda-package-streaming-0.7.0-py_0
Proceed ([y]/n)? n
Package Manager
Mambaforge has the package manager mamba which is based upon the conda package manager. Both are command line based and the syntax is similar as mamba is essentially a child package manager of conda.
In Mambaforge input:
(base) %USERPROFILE%> mamba
In Anconda input:
(base) %USERPROFILE%> mamba
This will display a summary of the package manager:
usage: mamba [-h] [-V] command ...
conda is a tool for managing and deploying applications, environments and packages.
Options:
positional arguments:
command
clean Remove unused packages and caches.
compare Compare packages between conda environments.
config Modify configuration values in .condarc. This is modeled after the git config command. Writes to
the user .condarc file (%USERPROFILE%\.condarc) by default. Use the --show-sources flag to
display all identified configuration locations on your computer.
create Create a new conda environment from a list of specified packages.
info Display information about current conda install.
init Initialize conda for shell interaction.
install Installs a list of packages into a specified conda environment.
list List installed packages in a conda environment.
package Low-level conda package utility. (EXPERIMENTAL)
remove (uninstall)
Remove a list of packages from a specified conda environment. Use `--all` flag to remove all
packages and the environment itself.
rename Renames an existing environment.
run Run an executable in a conda environment.
search Search for packages and display associated information.The input is a MatchSpec, a query
language for conda packages. See examples below.
update (upgrade) Updates conda packages to the latest compatible version.
notices Retrieves latest channel notifications.
repoquery Query repositories using mamba.
options:
-h, --help Show this help message and exit.
-V, --version Show the conda version number and exit.
conda commands available from other packages (legacy):
env
(base) %USERPROFILE%>
The most import subcommands are:
- list
- search
- create
- activate
- install
- update
- clean
- remove
- env
list
To list the packages installed in the currently selected Python environment in Mambaforge input:
(base) %USERPROFILE%> mamba list
In Anaconda input:
(base) %USERPROFILE%> conda list
The output will be shown:
# packages in environment at %USERPROFILE%\mambaforge:
#
# Name Version Build Channel
boltons 23.0.0 pyhd8ed1ab_0 conda-forge
brotlipy 0.7.0 py310h8d17308_1005 conda-forge
bzip2 1.0.8 h8ffe710_4 conda-forge
ca-certificates 2022.12.7 h5b45459_0 conda-forge
certifi 2022.12.7 pyhd8ed1ab_0 conda-forge
cffi 1.15.1 py310h628cb3f_3 conda-forge
charset-normalizer 3.1.0 pyhd8ed1ab_0 conda-forge
colorama 0.4.6 pyhd8ed1ab_0 conda-forge
conda 23.3.1 py310h5588dad_0 conda-forge
conda-package-handling 2.0.2 pyh38be061_0 conda-forge
conda-package-streaming 0.7.0 pyhd8ed1ab_1 conda-forge
cryptography 40.0.2 py310h6e82f81_0 conda-forge
fmt 9.1.0 h181d51b_0 conda-forge
idna 3.4 pyhd8ed1ab_0 conda-forge
jsonpatch 1.32 pyhd8ed1ab_0 conda-forge
jsonpointer 2.0 py_0 conda-forge
krb5 1.20.1 heb0366b_0 conda-forge
libarchive 3.6.2 h27c7867_0 conda-forge
libcurl 8.0.1 h68f0423_0 conda-forge
libffi 3.4.2 h8ffe710_5 conda-forge
libiconv 1.17 h8ffe710_0 conda-forge
libmamba 1.4.2 h8a7d157_0 conda-forge
libmambapy 1.4.2 py310h3fe4c2e_0 conda-forge
libsolv 0.7.23 h12be248_0 conda-forge
libsqlite 3.40.0 hcfcfb64_1 conda-forge
libssh2 1.10.0 h9a1e1f7_3 conda-forge
libxml2 2.10.4 hc3477c8_0 conda-forge
libzlib 1.2.13 hcfcfb64_4 conda-forge
lz4-c 1.9.4 hcfcfb64_0 conda-forge
lzo 2.10 he774522_1000 conda-forge
mamba 1.4.2 py310hd9d798f_0 conda-forge
menuinst 1.4.19 py310h5588dad_1 conda-forge
miniforge_console_shortcut 2.0 h57928b3_1 conda-forge
openssl 3.1.0 hcfcfb64_3 conda-forge
packaging 23.1 pyhd8ed1ab_0 conda-forge
pip 23.1.2 pyhd8ed1ab_0 conda-forge
pluggy 1.0.0 pyhd8ed1ab_5 conda-forge
pybind11-abi 4 hd8ed1ab_3 conda-forge
pycosat 0.6.4 py310h8d17308_1 conda-forge
pycparser 2.21 pyhd8ed1ab_0 conda-forge
pyopenssl 23.1.1 pyhd8ed1ab_0 conda-forge
pysocks 1.7.1 pyh0701188_6 conda-forge
python 3.10.10 h4de0772_0_cpython conda-forge
python_abi 3.10 3_cp310 conda-forge
reproc 14.2.4 hcfcfb64_0 conda-forge
reproc-cpp 14.2.4 h63175ca_0 conda-forge
requests 2.29.0 pyhd8ed1ab_0 conda-forge
ruamel.yaml 0.17.22 py310h8d17308_0 conda-forge
ruamel.yaml.clib 0.2.7 py310h8d17308_1 conda-forge
setuptools 67.7.2 pyhd8ed1ab_0 conda-forge
tk 8.6.12 h8ffe710_0 conda-forge
toolz 0.12.0 pyhd8ed1ab_0 conda-forge
tqdm 4.65.0 pyhd8ed1ab_1 conda-forge
tzdata 2023c h71feb2d_0 conda-forge
ucrt 10.0.22621.0 h57928b3_0 conda-forge
urllib3 1.26.15 pyhd8ed1ab_0 conda-forge
vc 14.3 hb6edc58_10 conda-forge
vc14_runtime 14.34.31931 h5081d32_16 conda-forge
vs2015_runtime 14.34.31931 hed1258a_16 conda-forge
wheel 0.40.0 pyhd8ed1ab_0 conda-forge
win_inet_pton 1.1.0 pyhd8ed1ab_6 conda-forge
xz 5.2.6 h8d14728_0 conda-forge
yaml-cpp 0.7.0 h63175ca_2 conda-forge
zstandard 0.19.0 py310h0009e47_1 conda-forge
zstd 1.5.2 h12be248_6 conda-forge
(base) %USERPROFILE%>
Python packages use the version number a.i.p where a is the major version, i is the minor version and p is the patch version.
search
To search for a package for example spyder. In Mambaforge use:
(base) %USERPROFILE%> mamba search spyder
In Anaconda input:
(base) %USERPROFILE%> conda search spyder
The output in Mambaforge will be:
Loading channels: done
# Name Version Build Channel
spyder 5.4.2 py310h5588dad_0 conda-forge
spyder 5.4.2 py311h1ea47a8_0 conda-forge
spyder 5.4.2 py38haa244fe_0 conda-forge
spyder 5.4.2 py39hcbf5309_0 conda-forge
spyder 5.4.3 py310h5588dad_0 conda-forge
spyder 5.4.3 py311h1ea47a8_0 conda-forge
spyder 5.4.3 py38haa244fe_0 conda-forge
spyder 5.4.3 py39hcbf5309_0 conda-forge
(base) %USERPROFILE%>
In Anaconda will be:
Loading channels: done
# Name Version Build Channel
spyder 5.4.2 py310h5588dad_0 conda-forge
spyder 5.4.2 py311h1ea47a8_0 conda-forge
spyder 5.4.2 py38haa244fe_0 conda-forge
spyder 5.4.2 py39hcbf5309_0 conda-forge
(base) %USERPROFILE%>
Notice the versions are ordered and the newest version is at the bottom. A package may also be available for different Python versions. For example the latest version of Spyder is listed for Python 3.8, 3.9, 3.10 and 3.11. Currently Python Version 3.10 is the default version of Anaconda and Mambaforge.
Notice the difference in channels; Mambaforge uses the community channel conda-forge by default and Anaconda use the Anaconda Inc channel conda by default. The latest version in the conda channel is often behind the latest version in the community channel conda-forge as Anaconda Inc take some additional time for testing.
It is possible to specify the channel in Anaconda using the channel parameter:
(base) %USERPROFILE%> conda search spyder -c conda-forge
This will give the same output as Mambaforge:
Loading channels: done
# Name Version Build Channel
spyder 5.4.2 py310h5588dad_0 conda-forge
spyder 5.4.2 py311h1ea47a8_0 conda-forge
spyder 5.4.2 py38haa244fe_0 conda-forge
spyder 5.4.2 py39hcbf5309_0 conda-forge
spyder 5.4.3 py310h5588dad_0 conda-forge
spyder 5.4.3 py311h1ea47a8_0 conda-forge
spyder 5.4.3 py38haa244fe_0 conda-forge
spyder 5.4.3 py39hcbf5309_0 conda-forge
(base) %USERPROFILE%>
create
A Python environment is a subinstallation of Python which you can use to install a different version of Python and an assortment of Python packages without touching your base Python environment (default). Python environments are stored in the envs subfolder:
%USERPROFILE%/mambaforge/envs
%USERPROFILE%/anaconda3/envs


A Python environment with the name spyder will be created for the latest version of the Spyder IDE.
In Mambaforge use:
(base) %USERPROFILE%> mamba create -n spyder
In Anaconda use:
(base) %USERPROFILE%> conda create -n spyder
The Python environment will be created:
Looking for: []
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
To activate this environment, use
$ mamba activate spyder
To deactivate an active environment, use
$ mamba deactivate
(base) %USERPROFILE%>
The spyder subfolder will appear:
%USERPROFILE%/mambaforge/envs/spyder
%USERPROFILE%/anaconda3/envs/spyder
This folder will be empty until packages have been added to it.

activate
The prompt has the prefix base which means the base Python environment is selected and therefore any commands like list, install, remove, update will look at or make changes to the base Python environment:
(base) %USERPROFILE%>
To switch Python environment. In Mambaforge use:
(base) %USERPROFILE%> mamba activate spyder
In Anaconda use:
(base) %USERPROFILE%> conda activate spyder
Notice that the (base) now changes to (spyder) indicating the spyder Python environment is selected:
(spyder) %USERPROFILE%>
Notice that the (base) now changes to (spyder) indicating the spyder Python environment is selected. Now any commands like list, install, remove, update will look at or make changes to the base Python environment. For example if list is used:
(spyder) %USERPROFILE%> mamba list
An empty list displays because nothing has been added to the Python environment:
(spyder) %USERPROFILE%> mamba list
# packages in environment at %USERPROFILE%/mambaforge/envs/spyder:
#
# Name Version Build Channel
The Python environment will be activated only for that terminal session. If the terminal is closed and relaunched, the (base) Python environment which is the default will be reselected. The spyder environment will need to be activated again to work with it.
install
In Mambaforge it is recommended to install new packages in a separate Python environment.
To install a package in Mambaforge use the syntax:
(spyder) %USERPROFILE%> mamba install spyder
Multiple packages can be installed simultaneously:
(spyder) %USERPROFILE%> mamba install python spyder
The version number of the package can be assigned, for example to create a Python environment with Python 3.11 instead of the default Python 3.10 use:
(spyder) %USERPROFILE%> mamba install python=3.11 spyder
In Anaconda it is mandatory to install new packages in a separate Python environment. Installation of packages, particularly a package corresponding to an IDE such as Spyder which has a large number of dependencies will conflict with the dependencies for other packages in the base Python environment, normally resulting in numerous changes and most packages being removed, leaving the base environment in an unusable state.
Generally additional Python environments are made using packages from the community channel conda-forge. Python environments using mixed channels conda and conda-forge are unstable.
To install a package in Anaconda from the community channel conda-forge use the syntax:
(spyder) %USERPROFILE%> conda install spyder -c conda-forge
Multiple packages can be installed simultaneously:
(spyder) %USERPROFILE%> conda install python spyder -c conda-forge
The version number of the package can be assigned:
(spyder) %USERPROFILE%> conda install python=3.11 spyder -c conda-forge
To install Spyder and all its dependencies for Python 3.11. For Mambaforge use:
(spyder) %USERPROFILE%> mamba install spyder python=3.11 cython seaborn scikit-learn sympy openpyxl xlrd xlsxwriter lxml sqlalchemy
For Anaconda use:
(spyder) %USERPROFILE%> conda install spyder python=3.11 cython seaborn scikit-learn sympy openpyxl xlrd xlsxwriter lxml sqlalchemy -c conda-forge
Because each of these libraries have a large number of dependencies the following will display. The full list of ~300 packages and their details will display. Input y to proceed:
Looking for: ['spyder', 'python=3.11', 'cython', 'seaborn', 'scikit-learn', 'sympy', 'openpyxl', 'xlrd', 'xlsxwriter', 'lxml', 'sqlalchemy']
conda-forge/win-64 Using cache
conda-forge/noarch Using cache
Transaction
Prefix: %USERPROFILE%\mambaforge\envs\spyder
Updating specs:
- spyder
- python=3.11
- cython
- seaborn
- scikit-learn
- sympy
- openpyxl
- xlrd
- xlsxwriter
- lxml
- sqlalchemy
Package Version Build Channel Size
----------------------------------------------------------------------------------------------------------
Install:
----------------------------------------------------------------------------------------------------------
⁞
+ ipykernel 6.22.0 pyh025b116_0 conda-forge/noarch 112kB
+ ipython 8.13.2 pyh08f2357_0 conda-forge/noarch 584kB
⁞
+ matplotlib-base 3.7.1 py311h6e989c2_0 conda-forge/win-64 8MB
+ matplotlib-inline 0.1.6 pyhd8ed1ab_0 conda-forge/noarch 12kB
⁞
+ numpy 1.24.3 py311h0b4df5a_0 conda-forge/win-64 7MB
⁞
+ pandas 2.0.1 py311hf63dbb6_0 conda-forge/win-64 13MB
⁞
+ python 3.11.3 h2628c8c_0_cpython conda-forge/win-64 18MB
⁞
+ qt-main 5.15.8 h7f2b912_9 conda-forge/win-64 59MB
⁞
+ scikit-learn 1.2.2 py311h142b183_1 conda-forge/win-64 8MB
+ scipy 1.10.1 py311h37ff6ca_1 conda-forge/win-64 25MB
+ seaborn 0.12.2 hd8ed1ab_0 conda-forge/noarch 6kB
+ seaborn-base 0.12.2 pyhd8ed1ab_0 conda-forge/noarch 232kB
⁞
+ spyder 5.4.3 py311h1ea47a8_0 conda-forge/win-64 12MB
+ spyder-kernels 2.4.3 win_pyhd8ed1ab_0 conda-forge/noarch 80kB
⁞
Summary:
Install: 268 packages
Total download: 637MB
----------------------------------------------------------------------------------------------------------
Confirm changes: [Y/n] y
When the packages have finished downloading and installing, the following will display:
Downloading and Extracting Packages
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(spyder) %USERPROFILE%>
The Anaconda Navigator (which has to be launched from the base Python environment) can be used to select the spyder Python environment:


Exploring the spyder Python Environment
Now the following folder will be populated and contain a python.exe
%USERPROFILE%/envs/spyder
%USERPROFILE%/envs/spyder

In this folder will be Python 3.11 and the Python standard libraries. If the following is input:
(spyder) %USERPROFILE%> python
Details about the installed Python version will display:
(spyder) %USERPROFILE%> python
Python 3.11.3 | packaged by conda-forge | (main, Apr 6 2023, 08:50:54) [MSC v.1934 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
The Python prompt will then display:
>>>
There will also be a Lib subfolder:
%USERPROFILE%/envs/spyder/Lib
%USERPROFILE%/envs/spyder/Lib

The standard library datetime.py can be imported using:
>>> import datetime

There is a subfolder called collections and in that folder there is an __init__.py file, this is the file that is imported when collections is imported using:
>>> import collections


The modules in this folder or in the subfolders are known as Python standard libraries and are included with Python 3.11 itself.
There is also the site-packages subfolder which is where the third-party Python packages are installed which includes the popular data science libraries:

%USERPROFILE%/envs/spyder/Lib/site-packages
%USERPROFILE%/envs/spyder/Lib/site-packages
The numpy folder has a __init__.py file and this file is imported when the following is input:
>>> import numpy as np


The matplotlib folder has an __init__.py file (used to import the full library) and pyplot.py file (used to import the pyplot module, more commonly used). The pyplot module of this library is imported when the following is input:
>>> import matplotlib.pyplot as plt


To exit the Python prompt type in:
>>> exit()
The Powershell prompt will return:
(spyder) %USERPROFILE%>
To launch the Spyder IDE input:
(spyder) %USERPROFILE%> spyder
A QT warning may display which can be ignored:
(spyder) %USERPROFILE%> spyder
fromIccProfile: failed minimal tag size sanity
Spyder is a process that is running from the terminal and the terminal window will be unusable while Spyder is running. Another terminal window can be opened for another task. The Spyder IDE displays:

A Spyder shortcut will also be available in the Start Menu.
update
To update the Python environment. In Mambaforge use the command:
(spyder) %USERPROFILE%> mamba update --all
In Anaconda use the command:
(spyder) %USERPROFILE%> conda update --all -c conda-forge
Do not use this command with base Python environment in Anaconda.
If there are updates proposed changes will be displayed, these can be reviewed and accepted by inputting y.
Package Version Build Channel Size
--------------------------------------------------------------------------
Install:
--------------------------------------------------------------------------
+ blis 0.9.0 h8d14728_0 conda-forge/win-64 6MB
Change:
--------------------------------------------------------------------------
- libblas 3.9.0 16_win64_mkl conda-forge
+ libblas 3.9.0 16_win64_blis conda-forge/win-64 3MB
- libcblas 3.9.0 16_win64_mkl conda-forge
+ libcblas 3.9.0 16_win64_blis conda-forge/win-64 3MB
- liblapack 3.9.0 16_win64_mkl conda-forge
+ liblapack 3.9.0 5_hd5c7e75_netlib conda-forge/win-64 3MB
Upgrade:
--------------------------------------------------------------------------
- mkl 2022.1.0 h6a75c08_874 conda-forge
+ mkl 2023.1.0 h6a75c08_48682 conda-forge/win-64 144MB
Summary:
Install: 1 packages
Change: 3 packages
Upgrade: 1 packages
Total download: 158MB
--------------------------------------------------------------------------
Confirm changes: [Y/n] y
Otherwise if all packages are up to date, All requested packages already installed will display.
Looking for: ['alabaster', 'arrow', 'astroid', 'asttokens', 'atomicwrites', 'attrs', 'autopep8', 'babel', 'backcall', 'backports', 'backports.functools_lru_cache', 'bcrypt', 'beautifulsoup4', 'binaryornot', 'black', 'bleach', 'blis', 'brotli', 'brotli-bin', 'brotlipy', 'bzip2', 'ca-certificates', 'certifi', 'cffi', 'chardet', 'charset-normalizer', 'click', 'cloudpickle', 'colorama', 'comm', 'contourpy', 'cookiecutter', 'cryptography', 'cycler', 'cython', 'debugpy', 'decorator', 'defusedxml', 'diff-match-patch', 'dill', 'docstring-to-markdown', 'docutils', 'entrypoints', 'et_xmlfile', 'executing', 'flake8', 'fonttools', 'freetype', 'gettext', 'glib', 'glib-tools', 'greenlet', 'gst-plugins-base', 'gstreamer', 'icu', 'idna', 'imagesize', 'importlib-metadata', 'importlib_metadata', 'importlib_resources', 'inflection', 'intel-openmp', 'intervaltree', 'ipykernel', 'ipython', 'ipython_genutils', 'isort', 'jaraco.classes', 'jedi', 'jellyfish', 'jinja2', 'jinja2-time', 'joblib', 'jsonschema', 'jupyterlab_pygments', 'jupyter_client', 'jupyter_core', 'keyring', 'kiwisolver', 'krb5', 'lazy-object-proxy', 'lcms2', 'lerc', 'libblas', 'libbrotlicommon', 'libbrotlidec', 'libbrotlienc', 'libcblas', 'libclang', 'libclang13', 'libdeflate', 'libexpat', 'libffi', 'libglib', 'libhwloc', 'libiconv', 'libjpeg-turbo', 'liblapack', 'libogg', 'libpng', 'libsodium', 'libspatialindex', 'libsqlite', 'libtiff', 'libvorbis', 'libwebp', 'libwebp-base', 'libxcb', 'libxml2', 'libxslt', 'libzlib', 'lxml', 'm2w64-gcc-libgfortran', 'm2w64-gcc-libs', 'm2w64-gcc-libs-core', 'm2w64-gmp', 'm2w64-libwinpthread-git', 'markupsafe', 'matplotlib-base', 'matplotlib-inline', 'mccabe', 'mistune', 'mkl', 'more-itertools', 'mpmath', 'msys2-conda-epoch', 'munkres', 'mypy_extensions', 'nbclient', 'nbconvert', 'nbconvert-core', 'nbconvert-pandoc', 'nbformat', 'nest-asyncio', 'numpy', 'numpydoc', 'openjpeg', 'openpyxl', 'openssl', 'packaging', 'pandas', 'pandoc', 'pandocfilters', 'paramiko', 'parso', 'pathspec', 'patsy', 'pcre2', 'pexpect', 'pickleshare', 'pillow', 'pip', 'pkgutil-resolve-name', 'platformdirs', 'pluggy', 'ply', 'pooch', 'prompt-toolkit', 'prompt_toolkit', 'psutil', 'pthread-stubs', 'pthreads-win32', 'ptyprocess', 'pure_eval', 'pycodestyle', 'pycparser', 'pydocstyle', 'pyflakes', 'pygments', 'pylint', 'pylint-venv', 'pyls-spyder', 'pynacl', 'pyopenssl', 'pyparsing', 'pyqt', 'pyqt5-sip', 'pyqtwebengine', 'pyrsistent', 'pysocks', 'python', 'python-dateutil', 'python-fastjsonschema', 'python-lsp-black', 'python-lsp-jsonrpc', 'python-lsp-server', 'python-lsp-server-base', 'python-slugify', 'python-tzdata', 'python_abi', 'pytoolconfig', 'pytz', 'pywin32', 'pywin32-ctypes', 'pyyaml', 'pyzmq', 'qdarkstyle', 'qstylizer', 'qt-main', 'qt-webengine', 'qtawesome', 'qtconsole', 'qtconsole-base', 'qtpy', 'requests', 'rope', 'rtree', 'scikit-learn', 'scipy', 'seaborn', 'seaborn-base', 'setuptools', 'sip', 'six', 'snowballstemmer', 'sortedcontainers', 'soupsieve', 'sphinx', 'sphinxcontrib-applehelp', 'sphinxcontrib-devhelp', 'sphinxcontrib-htmlhelp', 'sphinxcontrib-jsmath', 'sphinxcontrib-qthelp', 'sphinxcontrib-serializinghtml', 'spyder', 'spyder-kernels', 'sqlalchemy', 'stack_data', 'statsmodels', 'sympy', 'tbb', 'text-unidecode', 'textdistance', 'threadpoolctl', 'three-merge', 'tinycss2', 'tk', 'toml', 'tomli', 'tomlkit', 'tornado', 'traitlets', 'typing-extensions', 'typing_extensions', 'tzdata', 'ucrt', 'ujson', 'unidecode', 'urllib3', 'vc', 'vc14_runtime', 'vs2015_runtime', 'watchdog', 'wcwidth', 'webencodings', 'whatthepatch', 'wheel', 'win_inet_pton', 'wrapt', 'xlrd', 'xlsxwriter', 'xorg-libxau', 'xorg-libxdmcp', 'xz', 'yaml', 'yapf', 'zeromq', 'zipp', 'zstd']
Pinned packages:
- python 3.11.*
Transaction
Prefix: %USERPROFILE%\mambaforge\envs\spyder
All requested packages already installed
(spyder) %USERPROFILE%>
It is recommended to periodically check for updates for a Python environment.
clean
The conda and mamba package managers cache packages, meaning the packages are downloaded as tarball files. If a tarball file has already been downloaded for a previously created Python environment it will be reused instead of redownloading the tarball again making installation faster. The tarball files from previous versions of Python libraries do not get deleted by default, which makes it easy to revert back to a previous version without redownloading any files. When the Python environment is frequently updated, there will be a large number of older versions of tarball files. These can be removed in Mambaforge using the command:
(spyder) %USERPROFILE%> mamba clean -all
In Anaconda instead use the command:
(spyder) %USERPROFILE%> conda clean -all
The following output will display, input y at each question in order to proceed with the clean up:
Will remove 322 (820.6 MB) tarball(s).
Proceed ([y]/n)? y
Will remove 1 index cache(s).
Proceed ([y]/n)? y
Will remove 35 (841.8 MB) package(s).
Proceed ([y]/n)? y
There are no tempfile(s) to remove.
There are no logfile(s) to remove.
(spyder) %USERPROFILE%>
revision
The revisions for a Python environment can be listed in Mambaforge using:
(spyder) %USERPROFILE%> mamba list --revision
Or in Anaconda using:
(spyder) %USERPROFILE%> conda list --revision
The revisions will be listed. For each revision the packages added and the packages removed will be displayed:
(spyder) %USERPROFILE%>mamba list --revision
2023-05-06 08:17:29 (rev 0)
2023-05-06 08:40:47 (rev 1)
⁝
+ipykernel-6.22.0 (conda-forge/noarch)
+ipython-8.13.2 (conda-forge/noarch))
⁝
+libblas-3.9.0 (conda-forge/win-64)
⁝
+libcblas-3.9.0 (conda-forge/win-64)
⁝
+matplotlib-base-3.7.1 (conda-forge/win-64)
+matplotlib-inline-0.1.6 (conda-forge/noarch)
⁝
+numpy-1.24.3 (conda-forge/win-64)
⁝
+pandas-2.0.1 (conda-forge/win-64)
⁝
+pyqt-5.15.7 (conda-forge/win-64)
+pyqt5-sip-12.11.0 (conda-forge/win-64)
⁝
+python-3.11.3 (conda-forge/win-64)
⁝
+scikit-learn-1.2.2 (conda-forge/win-64)
+scipy-1.10.1 (conda-forge/win-64)
+seaborn-0.12.2 (conda-forge/noarch)
+seaborn-base-0.12.2 (conda-forge/noarch)
⁝
+spyder-5.4.3 (conda-forge/win-64)
+spyder-kernels-2.4.3 (conda-forge/noarch)
⁝
2023-05-06 09:01:32 (rev 2)
libblas {3.9.0 (conda-forge/win-64) -> 3.9.0 (conda-forge/win-64)}
libcblas {3.9.0 (conda-forge/win-64) -> 3.9.0 (conda-forge/win-64)}
liblapack {3.9.0 (conda-forge/win-64) -> 3.9.0 (conda-forge/win-64)}
mkl {2022.1.0 (conda-forge/win-64) -> 2023.1.0 (conda-forge/win-64)}
+blis-0.9.0 (conda-forge/win-64)
(spyder) %USERPROFILE%>
A revision can be restored in Mambaforge using:
(spyder) %USERPROFILE%> mamba install --revision 1
Or in Anaconda using:
(base) PS %USERPROFILE%> conda install --revision 0
(spyder) PS %USERPROFILE%> conda install --revision 1 -c conda-forge
In my case for Mambaforge, it doesn't seem to work properly and no changes are made.
Looking for: []
conda-forge/noarch 12.2MB @ 2.5MB/s 6.0s
conda-forge/win-64 20.2MB @ 3.0MB/s 8.8s
Pinned packages:
- python 3.11.*
Transaction
Prefix: %USERPROFILE%\mambaforge\envs\spyder
All requested packages already installed
(spyder) %USERPROFILE%>
For Mambaforge it is more reliable to periodically export Python environment yxml files and import these to revert to a Python environment which is discussed below.
For Anaconda, reverting to a revision seems to be more reliable. The base Python environment where Spyder 5.4.1 was updated to Spyder 5.4.3 and didn't work due to dependencies not being satisfied displays:
(base) PS %USERPROFILE%> conda list --revision
2023-04-13 15:18:24 (rev 0)
⁞
+spyder-5.4.1
+spyder-kernels-2.4.1
⁞
2023-05-06 10:53:31 (rev 1)
⁞
spyder {5.4.1 -> 5.4.3 (defaults/win-64)}
spyder-kernels {2.4.1 -> 2.4.3 (defaults/win-64)}
⁞
And reverts back to revision 0:
(base) PS %USERPROFILE%> conda install --revision 0
## Package Plan ##
environment location: C:\Users\Phili\anaconda3
added / updated specs:
- anaconda-client
- anaconda-navigator
- anaconda-project
- conda
- conda-build
- conda-content-trust
- conda-pack
- conda-package-handling
- conda-package-streaming
- conda-token
- conda-verify
- console_shortcut
- menuinst
- pip
- powershell_shortcut
- python=3.10
- setuptools
- spyder==5.4.3
- wheel
The following packages will be UPDATED:
dask pkgs/main/noarch::dask-2022.2.1-pyhd3~ --> pkgs/main/win-64::dask-2022.7.0-py310haa95532_0
dask-core pkgs/main/noarch::dask-core-2022.2.1-~ --> pkgs/main/win-64::dask-core-2022.7.0-py310haa95532_0
distributed pkgs/main/noarch::distributed-2022.2.~ --> pkgs/main/win-64::distributed-2022.7.0-py310haa95532_0
The following packages will be DOWNGRADED:
ipython 8.12.0-py310haa95532_0 --> 8.10.0-py310haa95532_0
jupyter_client 8.1.0-py310haa95532_0 --> 7.3.4-py310haa95532_0
qtconsole 5.4.2-py310haa95532_0 --> 5.4.0-py310haa95532_0
spyder 5.4.3-py310haa95532_0 --> 5.4.1-py310haa95532_0
spyder-kernels 2.4.3-py310haa95532_0 --> 2.4.1-py310haa95532_0
tornado 6.2-py310h2bbff1b_0 --> 6.1-py310h2bbff1b_0
Proceed ([y]/n)? y
This completes the operation as expected:
Downloading and Extracting Packages
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(base) PS %USERPROFILE%>
remove
A package can be removed (uninstalled) in Mambaforge using:
(spyder) %USERPROFILE%> mamba remove spyder
Or in Anaconda using:
(spyder) %USERPROFILE%> conda remove spyder
The following output will display. Note removing a package that other packages are dependent on will also remove those packages. Review the changes and input y in order to proceed:
Removing specs: ['spyder']
Transaction
Prefix: %USERPROFILE%\mambaforge\envs\spyder
Removing specs:
- spyder
Package Version Build Channel Size
------------------------------------------------------------
Remove:
------------------------------------------------------------
- spyder 5.4.3 py311h1ea47a8_0 conda-forge
Summary:
Remove: 1 packages
Total download: 0 B
------------------------------------------------------------
Confirm changes: [Y/n] y
The package spyder is now removed:
Confirm changes: [Y/n] y
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(spyder) %USERPROFILE%>
Attempting to launch Spyder now will give an error:
(spyder) %USERPROFILE%> spyder
(spyder) %USERPROFILE%> spyder
'spyder' is not recognized as an internal or external command,
operable program or batch file.
env
The env command can be used to list and remove Python environments. To list the Python environments in Mambaforge use:
(spyder) %USERPROFILE%> mamba env list
To list the Python environments in Anaconda use:
(spyder) %USERPROFILE%> conda env list
The following will be output:
(spyder) %USERPROFILE%> mamba env list
# conda environments:
#
base %USERPROFILE%\mambaforge
spyder * %USERPROFILE%\mambaforge\envs\spyder
The * indicates the Python environment selected.
To remove a Python environment, it cannot be activated. Therefore to remove the spyder Python environment, base will first be activated. To remove the spyder Python environment in Mambaforge use:
(spyder) %USERPROFILE%> mamba activate base
(spyder) %USERPROFILE%> mamba env remove -n spyder
In Anaconda use:
(spyder) %USERPROFILE%> conda activate base
(base) %USERPROFILE%> conda env remove -n spyder
The following will display:
Remove all packages in environment %USERPROFILE%\mambaforge\envs\spyder:
(spyder) %USERPROFILE%>
The spyder folder in:
%USERPROFILE%/mambaforge/envs
%USERPROFILE%/anaconda3/envs
will now be removed.

Python Environments for IDEs
The create and install commands can be combined, which will create a Python environment with packages installed in revision 0.
spyder – Mambaforge
A Python environment for Spyder can be created on Mambaforge using the following steps:
Create:
(base) %USERPROFILE%> mamba create -n spyder python=3.11 spyder cython seaborn scikit-learn sympy openpyxl xlrd xlsxwriter lxml sqlalchemy
Update:
(base) %USERPROFILE%> mamba activate spyder
(spyder) %USERPROFILE%> mamba update --all
Launch:
(base) %USERPROFILE%> mamba activate spyder
(spyder) %USERPROFILE%> spyder
spyder – Anaconda
A Python environment for Spyder can be created on Anaconda using the following steps:
Create:
(base) %USERPROFILE%> conda create -n spyder python=3.11 spyder cython seaborn scikit-learn sympy openpyxl xlrd xlsxwriter lxml sqlalchemy -c conda-forge
Update:
(base) %USERPROFILE%> conda activate spyder
(spyder) %USERPROFILE%> conda update --all -c conda-forge
Launch:
(base) %USERPROFILE%> conda activate spyder
(spyder) %USERPROFILE%> spyder
jupyterlab – mambaforge
A Python environment for JupyterLab can be created on Mambaforge using the following steps:
Create:
(base) %USERPROFILE%> mamba create -n jupyterlab jupyterlab
(base) %USERPROFILE%> mamba activate jupyterlab
(jupyterlab) %USERPROFILE%> mamba install cython seaborn scikit-learn sympy openpyxl xlrd xlsxwriter lxml sqlalchemy nodejs ipywidgets plotly jupyterlab-variableinspector ipympl pyqt
(base) %USERPROFILE%> mamba create -n jupyterlab4rc jupyterlab -c "conda-forge/label/jupyterlab_rc"
(base) %USERPROFILE%> mamba activate jupyterlab4rc
(jupyterlab4rc) %USERPROFILE%> mamba install cython seaborn scikit-learn sympy openpyxl xlrd xlsxwriter lxml sqlalchemy nodejs ipywidgets plotly jupyterlab-variableinspector ipympl pyqt
Update:
(base) %USERPROFILE%> mamba activate jupyterlab
(jupyterlab) %USERPROFILE%> mamba update --all
Launch:
(base) %USERPROFILE%> mamba activate jupyterlab
(jupyterlab) %USERPROFILE%> jupyter lab
jupyterlab – Anaconda
A Python environment for JupyterLab can be created on Anaconda using the following steps:
Create:
(base) %USERPROFILE%> conda create -n jupyterlab jupyterlab -c conda-forge
(base) %USERPROFILE%> conda activate jupyterlab
(jupyterlab) %USERPROFILE%> conda install cython seaborn scikit-learn sympy openpyxl xlrd xlsxwriter lxml sqlalchemy nodejs ipywidgets plotly jupyterlab-variableinspector ipympl pyqt -c conda-forge
Note specifying a Python version to install alongside JupyterLab will install an older version of JupyterLab as Anaconda rerelease JupyterLab for different Python versions. Specifying to install JupyterLab only when creating the Python environment will install the latest version of JupyterLab with Python 3.11. The Python environment can be activated so other optional dependencies can be installed.
Update:
(base) %USERPROFILE%> conda activate jupyterlab
(jupyterlab) %USERPROFILE%> conda update --all -c conda-forge
Launch:
(base) %USERPROFILE%> conda activate jupyterlab
(jupyterlab) %USERPROFILE%> jupyter lab
Exporting an Environment to a yml file
A Python environment can be exported to a Yet another Markdown Language (yml) File in Mambaforge using:
(base) %USERPROFILE%> mamba activate spyder
(spyder) %USERPROFILE%> mamba env export > Documents/spyder.yml
Or Anaconda using:
(base) %USERPROFILE%> conda activate spyder
(spyder) %USERPROFILE%> conda env export > Documents/spyder.yml
The file is saved in Documents:
%USERPROFILE%/Documents

The spyder.yml looks like the following:
name: spyder
channels:
- conda-forge
dependencies:
- alabaster=0.7.13=pyhd8ed1ab_0
- arrow=1.2.3=pyhd8ed1ab_0
- astroid=2.15.4=py311h1ea47a8_0
- asttokens=2.2.1=pyhd8ed1ab_0
- atomicwrites=1.4.1=pyhd8ed1ab_0
- attrs=23.1.0=pyh71513ae_0
- autopep8=2.0.2=pyhd8ed1ab_0
- babel=2.12.1=pyhd8ed1ab_1
- backcall=0.2.0=pyh9f0ad1d_0
- backports=1.0=pyhd8ed1ab_3
- backports.functools_lru_cache=1.6.4=pyhd8ed1ab_0
- bcrypt=3.2.2=py311ha68e1ae_1
- beautifulsoup4=4.12.2=pyha770c72_0
- binaryornot=0.4.4=py_1
- black=23.3.0=py311h1ea47a8_1
- bleach=6.0.0=pyhd8ed1ab_0
- blis=0.9.0=h8d14728_0
- brotli=1.0.9=hcfcfb64_8
- brotli-bin=1.0.9=hcfcfb64_8
- brotlipy=0.7.0=py311ha68e1ae_1005
- bzip2=1.0.8=h8ffe710_4
- ca-certificates=2022.12.7=h5b45459_0
- certifi=2022.12.7=pyhd8ed1ab_0
- cffi=1.15.1=py311h7d9ee11_3
- chardet=5.1.0=py311h1ea47a8_0
- charset-normalizer=3.1.0=pyhd8ed1ab_0
- click=8.1.3=win_pyhd8ed1ab_2
- cloudpickle=2.2.1=pyhd8ed1ab_0
- colorama=0.4.6=pyhd8ed1ab_0
- comm=0.1.3=pyhd8ed1ab_0
- contourpy=1.0.7=py311h005e61a_0
- cookiecutter=2.1.1=pyh6c4a22f_0
- cryptography=40.0.2=py311h28e9c30_0
- cycler=0.11.0=pyhd8ed1ab_0
- cython=0.29.34=py311h12c1d0e_0
- debugpy=1.6.7=py311h12c1d0e_0
- decorator=5.1.1=pyhd8ed1ab_0
- defusedxml=0.7.1=pyhd8ed1ab_0
- diff-match-patch=20200713=pyh9f0ad1d_0
- dill=0.3.6=pyhd8ed1ab_1
- docstring-to-markdown=0.12=pyhd8ed1ab_0
- docutils=0.19=py311h1ea47a8_1
- entrypoints=0.4=pyhd8ed1ab_0
- et_xmlfile=1.1.0=pyhd8ed1ab_0
- executing=1.2.0=pyhd8ed1ab_0
- flake8=6.0.0=pyhd8ed1ab_0
- fonttools=4.39.3=py311ha68e1ae_0
- freetype=2.12.1=h546665d_1
- gettext=0.21.1=h5728263_0
- glib=2.76.2=h12be248_0
- glib-tools=2.76.2=h12be248_0
- greenlet=2.0.2=py311h12c1d0e_0
- gst-plugins-base=1.22.0=h001b923_2
- gstreamer=1.22.0=h6b5321d_2
- icu=72.1=h63175ca_0
- idna=3.4=pyhd8ed1ab_0
- imagesize=1.4.1=pyhd8ed1ab_0
- importlib-metadata=6.6.0=pyha770c72_0
- importlib_metadata=6.6.0=hd8ed1ab_0
- importlib_resources=5.12.0=pyhd8ed1ab_0
- inflection=0.5.1=pyh9f0ad1d_0
- intel-openmp=2023.1.0=h57928b3_46319
- intervaltree=3.0.2=py_0
- ipykernel=6.22.0=pyh025b116_0
- ipython=8.13.2=pyh08f2357_0
- ipython_genutils=0.2.0=py_1
- isort=5.12.0=pyhd8ed1ab_1
- jaraco.classes=3.2.3=pyhd8ed1ab_0
- jedi=0.18.2=pyhd8ed1ab_0
- jellyfish=0.9.0=py311ha68e1ae_2
- jinja2=3.1.2=pyhd8ed1ab_1
- jinja2-time=0.2.0=pyhd8ed1ab_3
- joblib=1.2.0=pyhd8ed1ab_0
- jsonschema=4.17.3=pyhd8ed1ab_0
- jupyter_client=8.2.0=pyhd8ed1ab_0
- jupyter_core=5.3.0=py311h1ea47a8_0
- jupyterlab_pygments=0.2.2=pyhd8ed1ab_0
- keyring=23.13.1=py311h1ea47a8_0
- kiwisolver=1.4.4=py311h005e61a_1
- krb5=1.20.1=heb0366b_0
- lazy-object-proxy=1.9.0=py311ha68e1ae_0
- lcms2=2.15=h3e3b177_1
- lerc=4.0.0=h63175ca_0
- libblas=3.9.0=16_win64_blis
- libbrotlicommon=1.0.9=hcfcfb64_8
- libbrotlidec=1.0.9=hcfcfb64_8
- libbrotlienc=1.0.9=hcfcfb64_8
- libcblas=3.9.0=16_win64_blis
- libclang=16.0.3=default_h8b4101f_0
- libclang13=16.0.3=default_h45d3cf4_0
- libdeflate=1.18=hcfcfb64_0
- libexpat=2.5.0=h63175ca_1
- libffi=3.4.2=h8ffe710_5
- libglib=2.76.2=he8f3873_0
- libhwloc=2.9.1=h51c2c0f_0
- libiconv=1.17=h8ffe710_0
- libjpeg-turbo=2.1.5.1=hcfcfb64_0
- liblapack=3.9.0=5_hd5c7e75_netlib
- libogg=1.3.4=h8ffe710_1
- libpng=1.6.39=h19919ed_0
- libsodium=1.0.18=h8d14728_1
- libspatialindex=1.9.3=h39d44d4_4
- libsqlite=3.40.0=hcfcfb64_1
- libtiff=4.5.0=h6c8260b_6
- libvorbis=1.3.7=h0e60522_0
- libwebp=1.3.0=hcfcfb64_0
- libwebp-base=1.3.0=hcfcfb64_0
- libxcb=1.13=hcd874cb_1004
- libxml2=2.10.4=hc3477c8_0
- libxslt=1.1.37=h0192164_0
- libzlib=1.2.13=hcfcfb64_4
- lxml=4.9.2=py311h5942461_0
- m2w64-gcc-libgfortran=5.3.0=6
- m2w64-gcc-libs=5.3.0=7
- m2w64-gcc-libs-core=5.3.0=7
- m2w64-gmp=6.1.0=2
- m2w64-libwinpthread-git=5.0.0.4634.697f757=2
- markupsafe=2.1.2=py311ha68e1ae_0
- matplotlib-base=3.7.1=py311h6e989c2_0
- matplotlib-inline=0.1.6=pyhd8ed1ab_0
- mccabe=0.7.0=pyhd8ed1ab_0
- mistune=2.0.5=pyhd8ed1ab_0
- mkl=2023.1.0=h6a75c08_48682
- more-itertools=9.1.0=pyhd8ed1ab_0
- mpmath=1.3.0=pyhd8ed1ab_0
- msys2-conda-epoch=20160418=1
- munkres=1.1.4=pyh9f0ad1d_0
- mypy_extensions=1.0.0=pyha770c72_0
- nbclient=0.7.4=pyhd8ed1ab_0
- nbconvert=7.3.1=pyhd8ed1ab_0
- nbconvert-core=7.3.1=pyhd8ed1ab_0
- nbconvert-pandoc=7.3.1=pyhd8ed1ab_0
- nbformat=5.8.0=pyhd8ed1ab_0
- nest-asyncio=1.5.6=pyhd8ed1ab_0
- numpy=1.24.3=py311h0b4df5a_0
- numpydoc=1.5.0=pyhd8ed1ab_0
- openjpeg=2.5.0=ha2aaf27_2
- openpyxl=3.1.2=py311ha68e1ae_0
- openssl=3.1.0=hcfcfb64_3
- packaging=23.1=pyhd8ed1ab_0
- pandas=2.0.1=py311hf63dbb6_0
- pandoc=2.19.2=h57928b3_2
- pandocfilters=1.5.0=pyhd8ed1ab_0
- paramiko=3.1.0=pyhd8ed1ab_0
- parso=0.8.3=pyhd8ed1ab_0
- pathspec=0.11.1=pyhd8ed1ab_0
- patsy=0.5.3=pyhd8ed1ab_0
- pcre2=10.40=h17e33f8_0
- pexpect=4.8.0=pyh1a96a4e_2
- pickleshare=0.7.5=py_1003
- pillow=9.5.0=py311hc67b2de_0
- pip=23.1.2=pyhd8ed1ab_0
- pkgutil-resolve-name=1.3.10=pyhd8ed1ab_0
- platformdirs=3.5.0=pyhd8ed1ab_0
- pluggy=1.0.0=pyhd8ed1ab_5
- ply=3.11=py_1
- pooch=1.7.0=pyha770c72_3
- prompt-toolkit=3.0.38=pyha770c72_0
- prompt_toolkit=3.0.38=hd8ed1ab_0
- psutil=5.9.5=py311ha68e1ae_0
- pthread-stubs=0.4=hcd874cb_1001
- pthreads-win32=2.9.1=hfa6e2cd_3
- ptyprocess=0.7.0=pyhd3deb0d_0
- pure_eval=0.2.2=pyhd8ed1ab_0
- pycodestyle=2.10.0=pyhd8ed1ab_0
- pycparser=2.21=pyhd8ed1ab_0
- pydocstyle=6.3.0=pyhd8ed1ab_0
- pyflakes=3.0.1=pyhd8ed1ab_0
- pygments=2.15.1=pyhd8ed1ab_0
- pylint=2.17.3=pyhd8ed1ab_0
- pylint-venv=3.0.1=pyhd8ed1ab_0
- pyls-spyder=0.4.0=pyhd8ed1ab_0
- pynacl=1.5.0=py311hd53affc_2
- pyopenssl=23.1.1=pyhd8ed1ab_0
- pyparsing=3.0.9=pyhd8ed1ab_0
- pyqt=5.15.7=py311h125bc19_3
- pyqt5-sip=12.11.0=py311h12c1d0e_3
- pyqtwebengine=5.15.7=py311h5a77453_3
- pyrsistent=0.19.3=py311ha68e1ae_0
- pysocks=1.7.1=pyh0701188_6
- python=3.11.3=h2628c8c_0_cpython
- python-dateutil=2.8.2=pyhd8ed1ab_0
- python-fastjsonschema=2.16.3=pyhd8ed1ab_0
- python-lsp-black=1.2.1=pyhd8ed1ab_0
- python-lsp-jsonrpc=1.0.0=pyhd8ed1ab_0
- python-lsp-server=1.7.2=pyhd8ed1ab_0
- python-lsp-server-base=1.7.2=pyhd8ed1ab_0
- python-slugify=8.0.1=pyhd8ed1ab_1
- python-tzdata=2023.3=pyhd8ed1ab_0
- python_abi=3.11=3_cp311
- pytoolconfig=1.2.5=pyhd8ed1ab_0
- pytz=2023.3=pyhd8ed1ab_0
- pywin32=304=py311h12c1d0e_2
- pywin32-ctypes=0.2.0=py311h1ea47a8_1006
- pyyaml=6.0=py311ha68e1ae_5
- pyzmq=25.0.2=py311h7b3f143_0
- qdarkstyle=3.1=pyhd8ed1ab_0
- qstylizer=0.2.2=pyhd8ed1ab_0
- qt-main=5.15.8=h7f2b912_9
- qt-webengine=5.15.8=h5b1ea0b_0
- qtawesome=1.2.3=pyhd8ed1ab_0
- qtconsole=5.4.3=pyhd8ed1ab_0
- qtconsole-base=5.4.3=pyha770c72_0
- qtpy=2.3.1=pyhd8ed1ab_0
- requests=2.29.0=pyhd8ed1ab_0
- rope=1.8.0=pyhd8ed1ab_0
- rtree=1.0.1=py311hcacb13a_1
- scikit-learn=1.2.2=py311h142b183_1
- scipy=1.10.1=py311h37ff6ca_1
- seaborn=0.12.2=hd8ed1ab_0
- seaborn-base=0.12.2=pyhd8ed1ab_0
- setuptools=67.7.2=pyhd8ed1ab_0
- sip=6.7.9=py311h12c1d0e_0
- six=1.16.0=pyh6c4a22f_0
- snowballstemmer=2.2.0=pyhd8ed1ab_0
- sortedcontainers=2.4.0=pyhd8ed1ab_0
- soupsieve=2.3.2.post1=pyhd8ed1ab_0
- sphinx=7.0.0=pyhd8ed1ab_0
- sphinxcontrib-applehelp=1.0.4=pyhd8ed1ab_0
- sphinxcontrib-devhelp=1.0.2=py_0
- sphinxcontrib-htmlhelp=2.0.1=pyhd8ed1ab_0
- sphinxcontrib-jsmath=1.0.1=py_0
- sphinxcontrib-qthelp=1.0.3=py_0
- sphinxcontrib-serializinghtml=1.1.5=pyhd8ed1ab_2
- spyder=5.4.3=py311h1ea47a8_0
- spyder-kernels=2.4.3=win_pyhd8ed1ab_0
- sqlalchemy=2.0.12=py311ha68e1ae_0
- stack_data=0.6.2=pyhd8ed1ab_0
- statsmodels=0.14.0=py311h59ca53f_1
- sympy=1.11.1=pyh04b8f61_3
- tbb=2021.9.0=h91493d7_0
- text-unidecode=1.3=py_0
- textdistance=4.5.0=pyhd8ed1ab_0
- threadpoolctl=3.1.0=pyh8a188c0_0
- three-merge=0.1.1=pyh9f0ad1d_0
- tinycss2=1.2.1=pyhd8ed1ab_0
- tk=8.6.12=h8ffe710_0
- toml=0.10.2=pyhd8ed1ab_0
- tomli=2.0.1=pyhd8ed1ab_0
- tomlkit=0.11.8=pyha770c72_0
- tornado=6.3=py311ha68e1ae_0
- traitlets=5.9.0=pyhd8ed1ab_0
- typing-extensions=4.5.0=hd8ed1ab_0
- typing_extensions=4.5.0=pyha770c72_0
- tzdata=2023c=h71feb2d_0
- ucrt=10.0.22621.0=h57928b3_0
- ujson=5.7.0=py311h12c1d0e_0
- unidecode=1.3.6=pyhd8ed1ab_0
- urllib3=1.26.15=pyhd8ed1ab_0
- vc=14.3=hb25d44b_16
- vc14_runtime=14.34.31931=h5081d32_16
- vs2015_runtime=14.34.31931=hed1258a_16
- watchdog=3.0.0=py311h1ea47a8_0
- wcwidth=0.2.6=pyhd8ed1ab_0
- webencodings=0.5.1=py_1
- whatthepatch=1.0.4=pyhd8ed1ab_0
- wheel=0.40.0=pyhd8ed1ab_0
- win_inet_pton=1.1.0=pyhd8ed1ab_6
- wrapt=1.15.0=py311ha68e1ae_0
- xlrd=2.0.1=pyhd8ed1ab_3
- xlsxwriter=3.1.0=pyhd8ed1ab_0
- xorg-libxau=1.0.9=hcd874cb_0
- xorg-libxdmcp=1.1.3=hcd874cb_0
- xz=5.2.6=h8d14728_0
- yaml=0.2.5=h8ffe710_2
- yapf=0.32.0=pyhd8ed1ab_0
- zeromq=4.3.4=h0e60522_1
- zipp=3.15.0=pyhd8ed1ab_0
- zstd=1.5.2=h12be248_6
prefix: %USERPROFILE%\mambaforge\envs\spyder
This is a small file which gives the details about the Python environment which can be emailed or copied.
Creating an Environment from a yml file
A Python environment can be created from a yml file in Mambaforge using:
(base) %USERPROFILE%> mamba env create -n spyder -f Documents/spyder.yml
Or in Anaconda using:
(base) %USERPROFILE%> conda env create -n spyder -f Documents/spyder.yml
The Python environment spyder is created:
Summary:
Install: 269 packages
Total download: 0 B
───────────────────────────────────────────────────────────────────────────────────────────────────────
Downloading and Extracting Packages
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
# $ conda activate spyder
#
# To deactivate an active environment, use
#
# $ conda deactivate
(base) %USERPROFILE%>